
A CSP-based Approach to Design a Subnet Solving a Network

Construction Exercise for Beginners

Yuichiro Tateiwa
1

 and Yoshifumi Hisanaga
1

1
Nagoya Institute of Technology, Japan

Abstract. When creating exercise problems for network construction, teachers confirm whether the

problems are solvable, and then they create a correct answer. However, the work is troublesome and may

result in some mistakes such as creating unsolvable problems and incorrect answers. This paper proposes a

simulator that computes communications in exercise problems, and CSP formulas for solving exercise

problems by analyzing the simulator with symbolic execution. In experiments, In experiments, solving the

formulas with CSP solver Z3 found correct answers and unsolvable problems.

Keywords: Zeroconf, CSP, SMT, Z3, network construction, e-learning

1. Introduction

It is important to increase the number of network engineers who administer computer networks. These

network engineers can develop the infrastructure to develop a ubiquitous network society and to provide new

services for it. The experience of constructing a basic network is useful not only to the network

administrators but also to the network application programmers and the network system designers.

When creating exercise problems for network construction, teachers confirm whether the problems are

solvable, and then they create a correct answer. However, the work is troublesome and may result in some

mistakes such as creating unsolvable problems and incorrect answers.

Let us consider a tool that generates network settings sequentially and executes a network simulator with

each of the settings. If the tool confirms that one of the network behaviors satisfies all the requirements of

the exercise problem, it outputs the setting as one of the correct answers. However, finding a correct answer

requires a significant amount of time because there is a large search space that includes combinations of

setting values such as Internet Protocol addresses (IP addresses) and subnet masks.

Symbolic execution [1] is an execution method that executes a program with symbolic values as inputs

rather than concrete values. Interpreting a program by propagating symbols can analyze the relationships

between the input variables and the inner variables, along with the relationships between the input variables

and the branch conditions for an execution path. After finding inner variables and an execution path for

satisfying all the requirements of an exercise problem in the simulator, the relationships between them and

input variables that store a network setting can be analyzed. The relationships are helpful to reduce the

search space because of meaning constraints of network settings.

A Constraint Satisfaction Problem (CSP) is formulated by a set of variables, domain of the variables, and

constraints of the variables. If CSP solvers find a set of concrete values that satisfy the formulas, the solvers

output the set; otherwise, the solvers notify there are no values satisfying the formulas.

This paper proposes a CSP-based approach to find an example of correct network settings. This method

consists of the following two parts:

 Corresponding author. Tel.: +81527355450

 E-mail address: tateiwa@nitech.ac.jp

ISBN 978-981-14-4787-7

Proceedings of 2020 the 10th International Workshop on Computer Science and Engineering

(WCSE 2020)

Yangon (Rangoon), Myanmar (Burma), February 26- February 28, 2020, pp. 146-150

146

admin
文本框
doi: 10.18178/wcse.2020.02.025

1) A simulator to calculate communications that are specified in requirements of the exercise problems

2) CSP formulas consisting of network settings as the set of variables, original rules of each parameter as

the domains, and the relationships based on the symbolic execution as the constraints

2. Related Work

Zeroconf [2] is a set of technologies that assign an IP address to a new device that is connected to a

network. Zeroconf also resolves host names to IP addresses and detects network services in the network.

IPv4 Link-local addressing [3] is a technology used in Zeroconf for IP addressing. A host with the

technology can search for an unused IPv4 address (169.254/16) in a subnet including itself. The Dynamic

Host Configuration Protocol (DHCP) [4] searches for an IP address that is unused in a network that is

connected to the DHCP server and is included in the range of the server settings. However, the exercise

problems also require design of Media Access Control address (MAC address) assignments and cable

connections, which are not supported by the above technologies. The technologies cannot determine whether

there is a solution to the exercise problems.

3. Proposed Approach

3.1.Preliminaries

The function Value(s, e) in a step s and an expression e returns the output of e just before starting s. The

function Value(s, v) in a step s and a variable v returns the value of v just before starting s. The sequence

element Xi returns the i-th element in X. The operator .(dot) accesses the value of a member variable in a

tuple.

3.2.Network Settings

Table 1 denotes the network setting items and their data structure used in the exercises. The students can

set values just to the underlined variables. Hosts equip one Ethernet port named ep1 and switching hubs

equip five Ethernet ports named ep1-ep5. It is assumed that communication data can be exchanged between a

host and a switching hub.

3.3.Exercise Problems

Exercise problems consist of communication examples and a setting requirement.

A communication example is an example of Internet Control Message Protocol (ICMP) echo

communications, which should be established in correct networks. Let us consider that a device src sends an

ICMP echo request packet with a destination IP address dip. The data structure of a send setting is a tuple

(src, dip). The data structure of a communication example is a 3-tuple (snd, OW, HW) for which OW and HW

are a sequence of devices which are sorted in arrival order of the ICMP echo request and its reply on send

setting snd, respectively. OW and HW can be referred to as communication routes.

A setting requirement consists of devices that must be installed into networks, values that must be set in

devices, and Ethernet cables that must be connected to the assigned devices, and have the same data structure

as that of items in Table 1. All the items must be assigned concrete values, unless underlined items are

assigned “*” (denoting arbitrary values), to which students assign concrete values in exercises.

In actual exercise problems, communication examples and a setting requirement are expressed using

natural language and figures. Fig. 1 shows an example of exercise problems based on Fig. 2. The upper terms

in the squares denote the device type and the lower terms represent the device identifier.

3.4. Communication Simulator

This study proposes a communication simulator for computing communication routes of ICMP echo in

Fig. 3 and Table 2. The function Out works for transmission of ICMP echo data in a host. The function Fwd

implements reception and transmission of the data in a switching hub. The function In realizes reception and

response of the data in a host. The parameters nd, ep, pl, dip, dm, sip, and sm of the functions denote a device

identifier, an Ethernet port name, a payload, a destination IP address, a destination MAC address, a source IP

147

address, and a source MAC address, respectively. When establishing ICMP echo communication that

satisfies OW and HW, statements in the simulator are executed as follows:

1. When OW1 sends an ICMP echo Request req, steps 1-8 and 37 are executed. Value(8, dev2) is equal

to OW2.

2. When OW2 receives and sends req, steps 9-11 and 36 are executed. Value(11, dev2) is equal to OW3.

3. When OW3 receives req, steps 12-16 and 35 are executed.

4. When HW1 (i.e., OW3) sends the ICMP echo reply rep (i.e., the response to req), steps 17-24, 34, and

35 are executed. Value(24, dev2) is equal to HW2.

5. When HW2 receives and sends rep, steps 25-27 and 33 are executed. Value(27, dev2) is equal to HW3.

6. When HW3 receives rep, steps 28-32 are executed.

Table 1: Network Setting Items and The Corresponding Data Structure.

Name Data structure

Network Tuple (Set of devices Devices, Set of cables Cables)

Device

Host
Tuple (identifier id, IP address ip, subnet mask mask, MAC address mac, routing table entries

re1, re2, re3, ARP cache entries ae1, ae2, ae3)

Switching

hub
identifier id

Cable
Set {(device identifier dev, Ethernet port name ep), (device identifier dev, Ethernet port name

ep)}

Routing table entry
Tuple (destination IP address ip, destination network address nwaddr, next hop IP address nh,

nwaddr's subnet mask mask, sender Ethernet port name ep)

Arp cache entry Tuple (IP address ip, MAC address mac)

 Fig. 1: Example of an Exercise Problem. Fig. 2: Part of Components of The Communication

Example.

Fig. 3: Communication Simulator

SR = ({hst1, hst2, hst3, shb1}, {cbl1, cbl2, cbl3, cbl4})

CE = {(snd, OW, HW)}

 snd = (hst1, 192.168.0.2) OW = <hst1, shb1, hst2>

hst1 = (hst1, *, *, *, re1, re2, re3, ae1, ae2, ae3)

 re1 = (*, *, *, *, *) ae1 = (*, *) shb1 = shb1

cbl1 = (hst1, *, shb1, *)

148

Table 2: Functions Used in The Simulator.

Name Description

ChkDIP

(dev, dip)
If Obj(dev).ip=dip is satisfied, this function returns true; otherwise, it returns false.

ChkDMac

(dev, ep, dm)
If ep='ep1' ∧ dm=mac is satisfied, this function returns true; otherwise, it returns false.

DMac

(dev, dip, ep)

If Obj(dev).ae1.ip=dip is satisfied, this function returns Obj(dev).ae1.mac; else, if

Obj(dev).ae2.ip=dip is satisfied, this function returns Obj(dev).ae2.mac; else, if Obj(dev).ae3.ip=dip

is satisfied, this function returns Obj(dev).ae3.mac; else if there is an ne for which

Obj(ne.dev).ip=dip ∧ ne.dev≠dev is satisfied in ne∈Neigh(nx.dev), nx=Next(dev, ep), this function

returns Obj(ne.dev).mac; otherwise, this function returns an empty string.

L2Rtng

(dev, ep, dm)
If there is an ne for which Obj(ne.dev).mac=dm is satisfied in ne∈Neigh(dev), this function returns

Next(ne.dev, ne.ep).ep for the first found ne; otherwise, this function returns an empty string.

L3Rtng

(dev, dip)

If there is an r for which r.ip matches dip by the longest prefix match or for which r.nw and r.mask

match dip by the longest prefix match in r∈{Obj(dev).re1, Obj(dev).re2, Obj(dev).re3}, this

function returns a tuple (r.nh, r.ep) (r.nh≠0.0.0.0 is satisfied), a tuple (dip, r.ep) (r.nh=0.0.0.0 is

satisfied), or a tuple ('', '') (otherwise).

Neigh(dev) This function returns a set {nx | nx≠('',''), nx=Next(dev, ep), ep∈NI(dev)}.

Next

(dev, ep)
If there is a c in {(dev, ep), c}∈nw.Cables, this function returns c; otherwise, this function returns ('',

'').

NI(dev)

This function returns a set of Ethernet port names equipped on dev. If dev is a host, this function

returns a set {'ep1'}; else if dev is a switching hub, this function returns a set {'ep1', 'ep2', 'ep3', 'ep4',

'ep5'}.

Obj(dev) If there is a obj for which id=obj.id in obj∈nw.Devices, this function returns obj.

SIP(dev, ep) If ep='ep1' is satisfied, this function returns Obj(dev).ip; otherwise, it returns an empty string.

SMac

(dev, ep)
If ep='ep1' is satisfied, this function returns Obj(dev).mac; otherwise, it returns an empty string.

It can be determined whether an answer ans satisfies a communication example ce with the following

steps:

1. Set up the global variable nw of the simulator based on ans.

2. Execute the function Out(ce.snd.src, 'REQUEST', ce.snd.dip).

3. If the simulator acts by following the six steps described above, then ans satisfies ce.

3.5. CSP Formulation

In order to find network settings nw that satisfies both setting requirements sr and a communication

example ce, this paper formulates exercise problems as CSPs.

 Variables: Empty variables in nw, which correspond to the variables whose values are assigned as “*”

in sr.

 Domains: These are shown in Table 3. The variable dev in Cable stores an integer identifying hosts

and switching hubs, which are assigned with a unique integer that ranges from 1 to the number of

devices. The variable ep in Cable stores an integer that corresponds to a name of Ethernet port; the

integer i corresponds to Ethernet port 'epi'.

 Constraints: Eq. 1 ∧ Eq. 2 ∧ Eq. 3 using the following expressions

In order to execute the simulator with snd, the following constraints are required.

Value(1, nd) = ce.snd.src ∧ Value(1, pl) = 'REQUEST' ∧ Value(1, dip) = ce.snd.dst (1)

In order for the simulator to perform steps 1-37, the following constraints are required.

Value(2, ep == 'ep1') = Value(4, sip != '') = Value(7, dm != '') = Value(10, ep2 != '')

= Value(13, chkmac) = Value(15, chkip) = Value(16, pl=='REQUEST') = Value(18, ep != '')

= Value(20, sip != '') = Value(23, dm != '') = Value(26, ep2 != '') = Value(29, chkmac)

= Value(31, chkip) = true ∧ Value(32, pl=='REQUEST') = false (2)

In order that the value of variables storing reception devices in the simulator satisfies ce.OW and ce.HW,

the following constraints are required.

149

Value(8, dev2)=ce.OW2 ∧ Value(11, dev2) = ce.OW3 ∧ Value(24, dev2) = ce.HW2

∧ Value(27, dev2) = ce.HW3 (3)

Table 3: Domains of The Variables.

Variables Domains

Host ip

mask

mac

[0, 4294967295]

[0, 4294967295]

[0, 281474976710655]

Cable dev

ep

[1, size of Devices]

[1, 5]

Routing table entry ip

nwaddr

nh

mask

ep

[0, 4294967295]

[0, 4294967295]

[0, 4294967295]

[0, 4294967295]

1

Arp cache entry ip

mac

[0, 4294967295]

[0, 281474976710655]

4. Experiments

This study implemented a prototype of the CSP formulas with the SMT solver Z3 4.4.1 [5]. The

prototype evaluated the formulas with the exercise problem in Fig. 1 and three types of network settings on a

PC that featured a 2.93 GHz CPU and a 4 GB main memory.

No. 1 in Table 4 shows the prototype took network settings that had no values and then outputted

concrete values that were regarded as correct. No. 2 indicates the prototype took an example of the correct

settings and then reported that the settings satisfied the constraints; we agreed with the opinion. No. 3

suggests that the prototype took incorrect settings and then notified that the settings did not satisfy the

constraints; we agreed with the opinion. While the prototype ran, the execution times were measured

manually. Each execution time was less than one second.

Table 4: Evaluation of The Results.

No. Type of settings Output by prototype Opinion of authors Execution time (sec.)

1 Empty Concrete settings Correct < 1.0

2 Correct Satisfactory Agree < 1.0

3 Incorrect Unsatisfactory Agree < 1.0

5. Conclusion

A simulator that computes the communications in the exercise problems was proposed in this study. This

paper also describes the CSP formulas for solving the exercise problems by analyzing the simulator with

symbolic execution. The experiments show that the results for solving the formulas with the CSP solver Z3

are as per our estimations.

In our future work we will focus on expanding this method to deal with larger networks, including

routers, and developing a tool for generating CSP formulas based on the exercise problems.

6. References

[1] James C. King, “Symbolic execution and program testing,” Communications of the ACM, Vol. 19, No. 7, pp.385-

394, July 1976.

[2] Zero Configuration Networking (Zeroconf), http://www.zeroconf.org, accessed Dec. 16, 2019.

[3] S. Cheshire, B. Aboba, E. Guttman, “Dynamic Configuration of IPv4 Link-Local Addresses,” RFC 3927, May

2005.

[4] R. Droms, “Dynamic Host Configuration Protocol, ” RFC 2131, March 1997.

[5] Z3, https://github.com/Z3Prover/z3, accessed Dec. 20, 2019.

150

